## SYNTHESIS OF 1,3,4-THIADIAZOLE DERIVATIVES BY THE REACTION OF THIOSEMICARBAZIDE OR ITS 1- OR 4-SUBSTITUTED DERIVATIVES WITH SOME 1-BROMO-2-ACYLACETYLENES

A. S. Nakhmanovich, T. E. Glotova, T. N. Komarova, M. V. Sigalov, and L. S. Romanenko UDC 547.794.3.04'497.-1'314.07

The reaction of thiosemicarbazide, 4-methyl-, 4-phenyl-, or 1-phenylthiosemicarbazides with 1-bromo-2benzoyl(thenoyl-2)acetylenes in acetonitrile or glacial acetic acid yielded 2-acylmethylene- and 2-acylmethyl-5-amino-1,3,4-thiadiazoles. Heating of the latter in alcohol or aqueous alcohol gave the free bases.

Terminal  $\alpha$ -acetylenic ketones react with 1-phenylthiosemicarbazide to form 2-acylmethyl-5-imino-3-phenyl-4H-1,3,4thiadiazoles [1], whereas 1-acyl-2-phenylacetylenes react with thiosemicarbazide to form 2-amino-7-hydroxy-6,7-dihydro-1,3,4thiadiazepines [2]. Dimethyl acetylenedicarboxylate reacts with thiosemicarbazide and its 1-substituted derivatives to give 2hydrazino-5-methoxycarbonylmethylene-1,3-thiazolin-4-one [3], but with a 4-substituted thiosemicarbazide it gives 3-amino-2-imino-6-methoxycarbonyl-1,3-thiazin-4-one [4].

In order to investigate the reactivity of the 1-bromo-2-acylacetylenes (I) and (II) we have studied the reaction of these compounds with thiosemicarbazide (III) and 4-methyl-, 4-phenyl-, and 1-phenylthiosemicarbazides (IV-VI).

At equimolar reagent ratio at 20°C in acetonitrile or glacial acetic acid the reaction forms the 2-substituted-5-amino-1,3,4-thiadiazole hydrobromides (XIV-XXI) in yields of 57-85%.

The reaction of 1-bromo-2-acylacetylenes (I, R = Ph; II,  $R = \alpha - C_4 H_3 S$ ) with thiosemicarbazide and its substituted derivatives (III-VI) probably proceeds by nucleophilic replacement of bromine at the ethinyl carbon [5] to form the intermediate ethinyl sulfides (VII).

Under the experimental conditions (VII) undergoes intramolecular cyclization to form the 2-acylmethylene-5-amino-3H-1,3,4-thiadiazole hydrobromides (VIII-XV). Those compounds in which  $R^1 = H$  (VIII-XIII) are easily converted to the more stable 2-acylmethyl-5-amino-1,3,4-thiadiazole hydrobromides (XVI-XXI).

Attempts to carry out the reaction in MeOH or EtOH at 20°C or with cooling (at +5 to  $-20^{\circ}$ C) were unsuccessful.

The IR spectra of (XIV) and (XV) contain C–S bands at 680-690 cm<sup>-1</sup>, C=C and C=N bands at 1530-1600 cm<sup>-1</sup>, C=O bands at 1650-1680 cm<sup>-1</sup>, and two primary amine bands at 3050-3140 and 3220-3340 cm<sup>-1</sup>.

| Com-<br>pound                                         | Empirical<br>formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yield, %                                   |                      | Com-                                                                      | Empirical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yield,                                       |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A                                          | В                    | pound                                                                     | formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>%</b>                                     |
| XIV<br>XV<br>XVI<br>XVII<br>XVIII<br>XIX<br>XX<br>XXI | C <sub>16</sub> H <sub>14</sub> BrN <sub>3</sub> OS<br>C <sub>14</sub> H <sub>12</sub> BrN <sub>3</sub> OS <sub>2</sub><br>C <sub>10</sub> H <sub>10</sub> BrN <sub>3</sub> OS<br>C <sub>8</sub> H <sub>8</sub> BrN <sub>3</sub> OS <sub>2</sub><br>C <sub>11</sub> H <sub>12</sub> BrN <sub>3</sub> OS<br>C <sub>9</sub> H <sub>10</sub> BrN <sub>3</sub> OS <sub>2</sub><br>C <sub>16</sub> H <sub>14</sub> BrN <sub>3</sub> OS<br>C <sub>14</sub> H <sub>12</sub> BrN <sub>3</sub> OS <sub>2</sub> | 84<br><br>80<br>71<br>84<br>74<br>85<br>82 | 74<br>57<br>72<br>77 | XXII<br>XXIII<br>XXIV<br>XXV<br>XXVI<br>XXVII<br>XXVIII<br>XXVIII<br>XXIX | C <sub>16</sub> H <sub>13</sub> N <sub>3</sub> OS<br>C <sub>14</sub> H <sub>11</sub> N <sub>3</sub> OS <sub>2</sub><br>C <sub>10</sub> H <sub>9</sub> N <sub>3</sub> OS<br>C <sub>6</sub> H <sub>7</sub> N <sub>3</sub> OS <sub>2</sub><br>C <sub>11</sub> H <sub>11</sub> N <sub>3</sub> OS<br>C <sub>9</sub> H <sub>9</sub> N <sub>3</sub> OS <sub>2</sub><br>C <sub>16</sub> H <sub>13</sub> N <sub>3</sub> OS <sub>2</sub><br>C <sub>14</sub> H <sub>11</sub> N <sub>3</sub> OS <sub>2</sub> | 80<br>71<br>82<br>75<br>74<br>71<br>85<br>79 |

TABLE 1. Properties of Synthesized Compounds

Irkutsk Institute of Organic Chemistry, Siberian Division, Academy of Sciences of the USSR, Irkutsk, 664033. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1421-1423, October, 1990. Original article submitted December 13, 1988. The IR spectra of the hydrobromides (XVI-XXI) show a broad ammonium band in the 2550-3350 cm<sup>-1</sup> region, the C-S bond at 670-720 cm<sup>-1</sup>, C=C and C=N bonds at 1540-1615 cm<sup>-1</sup>, and C=0 at 1630-1660 cm<sup>-1</sup>.

When hydrobromides (XIV-XXI) are heated in alcohol or aqueous alcohol, HBr is split off and the free bases (XXII-XXIX) are formed in 71-85% yield.

The IR spectra of 2-acylmethylene-5-amino- $\Delta^4$ -1,3,4-thiadiazolines (XXII, XXIII) and 2-acylmethyl-5-amino-1,3,4-thiadiazoles (XXIV-XXIX) contain bands of the C–S bond at 670-700 cm<sup>-1</sup>, C=C and C=N bonds at 1490-1590 cm<sup>-1</sup>, two primary amino bands at 3095-3280 and 3290-3430 cm<sup>-1</sup> for (XXII-XXV), and a secondary amino band at 3230-3410 cm<sup>-1</sup> for (XXVI-XXIX).



Using (XXVIII) ( $R = R^2 = Ph$ ,  $R^1 = H$ ) as an example, the dependence of tautomeric equilibrium on temperature and solvent was studied by PMR spectroscopy.



A solution of (XXVIII) in DMSO-D<sub>6</sub> at 20°C shows singlets for the  $CH_2$  protons at 4.92 ppm and for the CH= protons at 6.53 ppm. The exocyclic NH groups of both forms give two signals, at 10.28 and 10.16 ppm. The A:B ratio is 70:30.

In DMFA-D<sub>7</sub> at 20°C the equilibrium is completely shifted to tautomer A. When the temperature is lowered to  $-40^{\circ}$ C the A:B ratio is 70:30.

The main differences between the PMR spectrum of hydrobromide (XX) and that of free base (XXVIII) in DMSO-D<sub>6</sub> (or DMFA-D<sub>7</sub>) solution at 20°C are the broadening of the CH<sub>2</sub> proton signal at 4.94 ppm (or 5.15 ppm in DMFA-D<sub>7</sub>) and the presence of a narrow NH signal at 10.8 ppm (or 12.06 ppm in DMFA-D<sub>7</sub>). At -40°C in DMFA-D<sub>7</sub> solution the ratio of A and B hydrobromides is 30:70, and the NH group gives four signals, at 12.97, 11.92, 11.78, and 9.07 ppm. Thus, when a solution of hydrobromide (XX) in DMFA-D<sub>7</sub> is cooled the tautomeric equilibrium, in contrast to that of the free base (XXVIII), is shifted toward the  $\Delta^4$ -1,3,4-thiadiazoline form B.

The structures of the substituted  $\Delta^{4}$ -1,3,4-thiadiazolines (XXII) and (XXIII) and of the 1,3,4-thiadiazoles (XXIV-XXIX) were confirmed by <sup>1</sup>H and <sup>13</sup>C NMR data.

## **EXPERIMENTAL**

IR spectra were obtained with a UR-20 spectrometer in KBr tablets; <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained with a Tesla BS-567A spectrometer (100 MHz) in DMSO-D<sub>6</sub>, with HMDS internal standard.

The properties of the synthesized compounds are shown in Table 1. Elemental composition (C, H, BR, N, S) of (XIV-XXIX) agreed with the calculated values.

5-Amino-2-benzoylmethylene-3-phenyl- $\Delta^4$ -1,3,4-thiadiazoline Hydrobromide (XIV). A. To a solution of 1.05 g (5 mmoles) of 1-bromo-2-benzoylacetylene in 15 ml of MeCN was added 0.84 g (5 mmoles) of 1-phenylthiosemicarbazide with stirring. The mixture was stirred for 1.5 h at 20°C, and the resulting precipitate was filtered off and dried in vacuum. Yield 1.57 g (84%), orange crystals with mp 225-230°C (from glacial AcOH).

B. The reaction was carried out similarly, but in glacial AcOH. Yield 1.4 g (74%).

Compounds (XV-XXI) were obtained similarly.

5-Amino-2-benzoylmethylene-3-phenyl- $\Delta^4$ -1,3,4-thiadiazoline (XXII). Hydrobromide (XIV), 1 g (2.7 mmoles) was dissolved in 50 ml of EtOH with heating. The solution was cooled to 0°C and the precipitate was filtered off. Gold needles, mp 191-194°C (from EtOH). Yield 0.63 g (80%).

Free bases (XXIII-XXV) and (XXVIII, XXIX) were obtained analogously.

Compounds (XXVI, XXVII) ( $R^2 = Me$ ) were obtained by heating hydrobromides (XVIII, XIX) in 3:1 water-alcohol in the presence of an equimolar amount of Et<sub>3</sub>N.

## LITERATURE CITED

- 1. A. S. Nakhmanovich, T. E. Glotova, M. V. Sigalov, and V. Yu. Vitkovskii, *Khim. Geterotsikl. Soedin.*, No. 5, 703 (1984).
- 2. T. E. Glotova, A. S. Nakhmanovich, M. V. Sigalov, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 1, 216 (1987).
- 3. J. B. Hendrickson, R. Ress, and J. E. Templeton, J. Am. Chem. Soc., 86, 107 (1964).
- 4. J. W. Lown and J. C. N. Ma, Can. J. Chem., 45, 953 (1967).
- 5. S. I. Miller, C. E. Orzech, C. A. Welch, et al., J. Am. Chem. Soc., 84, 2020 (1962).