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The reaction of thiosemicarbazide, 4-methyl-, 4-phenyl-, or 1-phenylthiosemicarbazides with 1-bromo-2- 
benzoyl( thenoyl-2 )acetylenes in acetonitrile or glacial acetic acid yielded 2-acylmethylene- and 2-acylmethyl- 
5-amino-13,4-thiadiazoles. Heating of the latter in alcohol or aqueous alcohol gave the free bases. 

Terminal ct-acetylenic ketones react with 1-phenylthiosemicarbazide to form 2-acylmethyl-5-imino-3-phenyl-4H-1,3,4- 
thiadiazoles [ 1 ], whereas 1-acyl-2-phenylacetylenes react with thiosemicarbazide to form 2-amino-7-hydroxy-6,7-dihydro- 1,3,4- 
thiadi~7epines [2]. Dimethyl acetylenedicarboxylate reacts with thiosemicarbazide and its 1-substituted derivatives to give 2- 
hydrazino-5-methoxycarbonylmethylene-l,3-thiazolin-4-one [3], but with a 4-substituted thiosemicarbazide it gives 3-amino- 
2-imino-6-methoxycarbonyl- 1,3-thlazin-4-one [4]. 

In order to investigate the reactivity of the 1-bromo-2-acylacetylenes (I) and flI) we have studied the reaction of these 
compounds with thiosemicarbazide (11I) and 4-methyl-, 4-phenyl-, and 1-phenylthiosemicarbazides (IV-VI). 

At equimolar reagent ratio at 20~ in acetonitrile or glacial acetic acid the reaction forms the 2-substituted-5-amino-1,3,4- 
thiadiazole hydrobromides (XIV-XXI) in yields of 57-85%. 

The reaction of 1-bromo-2-acylacetylenes fl, R = Ph; II, R = ct-C4H3S ) with thiosemicarbazide and its substituted 
derivatives (III-VI) probably proceeds by nucleophilic replacement of bromine at the ethinyl carbon [5] to form the 
intermediate ethinyl sulfides (VII). 

Under the experimental conditions (VII) undergoes intramolecular cyclization to form the 2-acylmethylene-5-amino-3H- 
1,3,4-thiadiazole hydrobromides (VIII-XV). Those compounds in which R 1 = H (VIII-XIII) are easily converted to the more 
stable 2-acylmethyl-5-amino-l,3,4-thiadiazole hydrobromides (XVI-XXI). 

Attempts to carry out the reaction in MeOH or EtOH at 20~ or with cooling (at +5 to -20~ were unsuccessful. 
The IR spectra of (X/V) and (XV) contain C-S bands at 680-690 cm -1, C---C and C=N bands at 1530-1600 cm -1, C=O 

bands at 1650-1680 cm -1, and two primary amine bands at 3050-3140 and 3220-3340 cm-L 

TABLE 1. Properties of Synthesized Compounds 

Com- 
pound 

XIV 
XV 

XVI 
XVI I 

XVIII 
XIX 
xx 

XXI 

Empirical 
formula 

C,eH,4BrN3OS 
C,4H,2BrN.~OS~ 
C,oH,oBrSf3OS 
C,H,BrN3OS2 
C,,HnBrNzOS 
CgH,oBrNsOS~ 
CI6H,4BrN3OS 
C,,H,2BrN3OS2 

Yield, % 

A B 

84 74 
- -  57 
8O 
71 7"2 
84 - -  
74 77 
85 
82 

Com- 
pound 

XXII 
XXIII 
XXIV 
XXV 

XXVI 
XXVII 

XXVIII 
XXIX 

Empirical 
formula 

C,eH,3N3OS 
C,4H,,NsOS2 
CIoHgN3OS 
CsHTN3OS2 
C,,H,,N3OS 
CgHgN3OS2 
C,sH,aN~OS 
C,4H,1N3OS~ 

Yield, 
% 

80 
71 
82 
75 
74 
71 
85 
79 
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The IR spectra of the hydrobromides (XVI-XXD show a broad ammonium band in the 2550-3350 cm -1 region, the C=S 
bond at 670-720 cm -1, C---C and CfN bonds at 1540-1615 em -1, and C=0 at 1630-1660 em -1. 

When hydrobromides (XIV-XXI) are heated in alcohol or aqueous alcohol, HBr is split off and the free bases (XXII-XXIX) 
are formed in 71-85% yield. 

The IR spectra of 2-aeylmethylene-5-amino-a4-1,3,4-thiadiazolines (XXII, XXIII) and 2-aeylmethyl-5-amino-l,3,4- 

thiadiazoles (XXIV-XXIX) contain bands of the C-S bond at 670-700 cm -1, C=C and C=N bonds at 1490-1590 cm -~, two 
primary amino bands at 3095-3280 and 3290-3430 cm -1 for (XXII-XXV), and a secondary amino band at 3230-3410 cm -1 for 
(xx~u-xx~. 
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* VIII--XIII, XVI--XXI, XXIV--XXIX Rt=H, XIV, XV, XXII, XXIII RJ=Ph 

Using (XXVIII) (R = R 2 = Ph, R 1 = H) as an example, the dependence of tautomeric equilibrium on temperature and 
solvent was studied by PMR spectroscopy. 

P h H N \  N P h H N \  N 
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C.2COPh CHCOPL 

A XX'VIII B 

A solution of (XXVIII) in DMSO-D~ at 20~ shows singlets for the CH2 protons at 4.92 ppm and for the CH= protons 

at 6.53 ppm. The exocyclie NH groups of both forms give two signals, at 10.28 and 10.16 ppm. The A:B ratio is 70:30. 
In DMFA-D7 at 20~ the equilibrium is completely shifted to tautomer A. When the temperature is lowered to --40~ 

the A:B ratio is 70:30. 
The main differences between the PMR spectrum of hydrobromide (XX) and that of free base (XXVIII) in DMSO-D6 (or 

DMFA-DT) solution at 200C are the broadening of the CHz proton signal at 4.94 ppm (or 5.15 ppm in DMFA-DT) and the 
presence of a narrow NH signal at 10.8 ppm (or 12.06 ppm in DMFA-DT). At --40~ in DMFA-D7 solution the ratio of A 
and B hydrobromides is 30:70, and the NH group gives four signals, at 12.97, 11.92, 11.78, and 9.07 ppm. Thus, when a 
solution of hydrobromide (XX") in DMFA-D7 is cooled the tautomerie equilibrium, in contrast to that of the free base 
(XXVIII), is shifted toward the ZX4-1,3,4-thiadiazoline form B. 

The slructures of the substituted A4-1,3,4-thiadiazofines (XXII) and (XXIH) and of the 1,3,4-thiadiazoles (XXIV-XXIX) 
were confirmed by IH and 13C NMR data. 
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EXPERIMENTAL 

IR spectra were obtained with a UR-20 specl~ometer in KBr tablets; tH and 13C NMR spectra were obtained with a Tesla 
BS-567A spectrometer (100 MHz) in DMSO-D6, with HMDS internal standard. 

The properties of the synthesized compounds are shown in Table 1. Elemental composition (C, H, BR, N, S) of (XIV- 
XXIX) agreed with the calculated values. 

5-Amino-2.benzoylmethylene-3-phenyi-A4-1,3,4-thiadiazoline Hydrobromide (XIV). A. To a solu- 

tion of 1.05 g (5 mmoles) of 1-bromo-2-benzoylacetylene in 15 ml of MeCN was added 0.84 g (5 mmoles) of 1- 
phenylthiosemicarbazide with stirring. The mixture was stirred for 1.5 h at 20~ and the resulting precipitate was filtered off 
and dried in vacuum. Yield 1.57 g (84%), orange crystals with mp 225-230~ (from glacial AcOH). 

B. The reaction was carried out similarly, but in glacial AcOH. Yield 1.4 g (74%). 
Compounds (XV-XXI) were obtained similarly. 
5 .Amino-2-benzoylmethylene-3-phenyl-A4-1,3,4- thiadiazol ine (XXII). Hydrobromide (XIV), 1 g (2.7 

mmoles) was dissolved in 50 ml of EtOH with heating. The solution was cooled to 0~ and the precipitate was filtered off. 
Gold needles, mp 191-1940C (from EtOH). Yield 0.63 g (80%). 

Free bases (XXIII-XXV) and (XXVIII, XXIX) were obtained analogously. 
Compounds (XXVI, XXVII) (R 2 --- Me) were obtained by heating hydrobromides (XVIII, XIX) in 3:1 water-alcohol 

in the presence of an equimolar amount of Et3N. 
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